(i) We want a power series solution for

\n
$$
y' - (x+1)y' + x^{2}y = 0
$$
\n
$$
y'(0) = 1
$$
\nWe have

\n
$$
a_{1}(x) = -(x+1) = -1 - x
$$
\n
$$
a_{2}(x) = x^{2}
$$
\n
$$
b(x) = 0
$$
\n
$$
b(x) = 0
$$
\nThus, there must be a unique radius of convergence $t = \infty$

\n
$$
x_{0} = 0
$$
\n
$$
x_{0} = 0
$$
\n
$$
y(x) = \sum_{n=0}^{\infty} \frac{y^{(n)}(0)}{n!} x^{n}
$$
\n
$$
y(x) = \sum_{n=0}^{\infty} \frac{y^{(n)}(0)}{n!} x^{n}
$$
\n
$$
y(x) = \sum_{n=0}^{\infty} \frac{y^{(n)}(0)}{n!} x^{n}
$$
\n
$$
y'(0) = 1
$$
\n
$$
y'(0) = 1
$$
\n
$$
y'(0) = (0+1)\frac{y'(0)}{1} - 0\frac{y'(0)}{1} - 1
$$
\n
$$
y''(0) = 0\frac{y'(0) - 0}{1} - 1
$$
\n
$$
y''(0) = 0\frac{y''(0) - 0}{1} - 1
$$
\n
$$
y''(0) = 0
$$
\n
$$
y''(0
$$

Thus,
\n
$$
y(x) = 1 + X + \frac{1}{2!}X + \frac{2}{3!}X^2 + \frac{2}{4!}X^4 + \cdots
$$

\n $= 1 + X + \frac{1}{2}X^2 + \frac{1}{3}X + \frac{1}{12}X^4 + \cdots$
\n $= 1 + X + \frac{1}{2}X^2 + \frac{1}{3}X + \frac{1}{12}X^4 + \cdots$
\n $= 1 + X + \frac{1}{2}X^2 + \frac{1}{3}X + \frac{1}{12}X^4 + \cdots$
\n $= 1 + X + \frac{1}{2!}X^2 + \frac{1}{3}X + \frac{1}{12}X^4 + \cdots$
\n $= 1 + X + \frac{1}{2!}X + \frac{1}{3!}X^5 + \frac{1}{12}X^6 + \cdots$
\n $= 1 + X + \frac{1}{2!}X + \frac{1}{3!}X^6 + \frac{1}{12!}X^7 + \cdots$

Q
\nWe want a power series solution for
\n
$$
y'' + \frac{x}{1-x^2}y' - \frac{1}{1-x^2}y = 0
$$
\n
$$
y'(0) = 1
$$
\nWe have that
\n
$$
a_1(x) = \frac{x}{1-x^2} = x + x^3 + x^5 + ...
$$
\n
$$
a_n(x) = \frac{1}{1-x^2} = -1 - x^2 - x^4 - ...
$$
\n
$$
b(x) = 0
$$
\n
$$
b(x) = 0
$$
\n
$$
f(x) = \frac{1}{1-x^2} = -1 - x^2 - x^4 - ...
$$
\n
$$
b(x) = 0
$$
\n
$$
f(x) = \int_{0}^{\pi} f(x)dx = \int_{0}^{\pi} f(x)dx
$$
\n
$$
f(x) = \int_{0}^{\pi} f(x)dx = \int_{0}^{\pi} f(x)dx
$$
\n
$$
f(x) = \int_{0}^{\pi} \frac{f(x)}{x^2}dx
$$
\n
$$
f(x) = \int_{0}^{\pi} \frac{f(x)}{x^2}dx
$$
\n
$$
g(x) = \int_{0}^{\pi} \frac{f(x)}{x^2}dx
$$
\n<

We have
\n
$$
y'' + \frac{x}{1-x^2}y' - \frac{1}{1-x^2}y = 0
$$
\n
$$
y'(0) = 1
$$
\n
$$
y''(0) = 1
$$
\n
$$
y''(0) + \frac{0}{1-0^2}y'(0) - \frac{1}{1-0^2}y'(0) = 0
$$
\n
$$
y''(0) - 1 = 0
$$

We have
\n
$$
\begin{bmatrix}\ny'' + \frac{x}{1-x^2}y' - \frac{1}{1-x^2}y = 0 \\
y'(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny''(0) = 1 \\
y''(0) = 1\n\end{bmatrix}
$$
\nSo,
\n
$$
\begin{bmatrix}\ny''(0) + \frac{0}{1-0^2}y'(0) - \frac{1}{1-0^2}y(0) = 0 \\
y''(0) - 1 = 0\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny''(0) - 1 = 0 \\
y''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''(0) = 1 \\
y'''(0) = 1\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\ny'''
$$

no fractims:

$$
(1-x^2)y'' + xy' - y = 0
$$

Now just differentiate the above :

$$
(1-x^{2})y'' + (1-x^{2})y''' + y' + xy'' - y' = 0
$$

\n
$$
(1-x^{2})y''' - xy'' = 0
$$

\n
$$
(1-0^{2})y'''(0) - (0)y''(0) = 0
$$

\n
$$
y'''(0) = 0
$$

Now
$$
U(e
$$
 $(1-x^2)y''' - xy'' = 0$ from
\n $u^{\omega} = \pi$ get $y^{(4)}$. We have
\n
$$
u^{\omega} = \pi
$$
\n $$

So,
\n
$$
y(x) = y(0) + y'(0) \times + \frac{y''(0)}{2!} \times + \frac{y'''(0)}{3!} \times + \frac{y^{(4)}(0)}{4!} \times + \cdots
$$
\n
$$
= 1 + x + \frac{1}{2} x^2 + \frac{1}{24} x^4 + \cdots
$$

with radivs of convergence at least $n=1$ around Xo=0. So, it converges for $a+|east-|< x < 1$. $\leftarrow \frac{\times}{(11111000)}$ -1 $O=$ χ χ

 $\begin{array}{c|c|c|c|c} \hline \quad & \quad & \quad & \quad \\\hline \end{array}$

③ We want ^a power series solutive to the initial-value problem xy" ⁺ x yzy ⁼ ⁰] Here Xo = ¹ y'(l) ⁼ ¹ , y(1) ⁼ ¹ Divide by ^X to get y" ⁺ xy' zy ⁼ ⁰ Note that r⁼ x a, (x) ⁼ ^x ⁼ ¹ ⁺ (x - 1) [r⁼ ¹ from HW az(x) = z ⁼ - 2-1i x- 1- 7 class and n ⁼ ¹ b(x ⁼ 0-n⁼ The minimum for the above ^r is ^r ⁼ ¹. the initial-value problem has Thus, series ^a power * y(x) ⁼ E(x - 1 n = ⁰ with at least radius of convergence r = ¹ . So, it will converge for ⁰ < X2. 2 X = H Xo r⁼¹ i ⁼ ¹

Let's find
$$
y(x)
$$
.
\nWe have:
\n
$$
y'' + x y' - 2x'y = 0
$$
\n
$$
y''(x) = 1, y(x) = 1
$$
\n
$$
y''(x) = 1, y(x) = 1
$$
\n
$$
y''(x) = 1, y(x) = 1
$$
\n
$$
y''(x) = 1, y(x) = 1
$$
\n
$$
y''(x) = 1, y(x) = 1
$$
\n
$$
y''(x) = 2
$$
\n
$$
y'''(x) = 3
$$
\n
$$
y'''(x) = 2x'y' = 0
$$
\n
$$
y'''(x) = 0
$$
\n
$$
y'''(x) = 0
$$
\n
$$
y'''(x) = 2x'y' + 2x'y' = 0
$$
\n
$$
y'''(x) = 0
$$
\n
$$
y'''(x) = -y
$$
\n
$$
y'''(x) = -y
$$
\n
$$
y'''(x) = -y
$$

Differentiate the y" formula above to find ^a formula for y't ! We get y(⁺ y" ⁺ xy" ⁺ (2x y ⁺ (1 -2x y" - Yx ^y + 2x^y ⁼ ⁰ y(⁺ xy" ⁺ (2 -2x))y" ⁺ 4xy-4x^y ⁼ ⁰ ⁺ (2 - 2(1))y + 4(1)22 I y(((,) (1)y'"() ^I t ³ - 4 - - 4(1)") ⁼ ⁸ y("(1) - ⁴ ⁺ ⁰ ⁺ ⁴ -⁴ ⁼ ⁰ y((1) ⁼ ⁴ ⑪ & ⁼ ^Y ^Y Thus , fur kX) We have ³ y(x) ⁼ y(1) ⁺ y'()(X-1) ⁺(4)(X- 1)⁺ ((x - 1 2 ⁺ xx - 11" +...

$$
= |+(x-1)+\frac{3}{2!}(x-1)^2-\frac{4}{3!}(x-1)^3+\frac{4}{4!}(x-1)^4...
$$

$$
= |+(x-1)+\frac{3}{2}(x-1)^2+\frac{2}{3}(x-1)^3+\frac{1}{6}(x-1)^4...
$$

$$
\frac{9}{4!}=3\cdot2\cdot1=6
$$

$$
\frac{4!}{4!}=4\cdot3\cdot2\cdot1=24
$$

$$
\begin{array}{ll}\n\text{(4)} We want a power series solution\n+ be intrial value problem\n
$$
y'' + \sin(x)y' + e^{x}y = 0 \\
y'(0) = 1, y(0) = 1\n\end{array}\n\quad \text{Here} \quad y
$$
$$

We have
\n
$$
h(x) = \sin(x) = x - \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} - \cdots
$$

\n $h(x) = 2 \sin(x) = x - \frac{1}{3!}x^{3} + \frac{1}{5!}x^{5} - \cdots$
\n $h(x) = e^{x} = 1 + x + \frac{1}{2!}x^{3} + \frac{1}{3!}x^{3} + \cdots$
\n $h(x) = 0$

We have
\n
$$
a_{0}(x) = \sin(x) = x - \frac{1}{3!}x + \frac{1}{5!}x^{-1}
$$
\n
$$
a_{0}(x) = e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$
\n
$$
b(x) = 0
$$
\nThus,
\n
$$
b(x) = 0
$$
\n
$$
a_{0}(x) = e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$
\n
$$
b_{0}(x) = 0
$$
\n
$$
b_{0}(x) = 0
$$
\n
$$
a_{0}(x) = e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$
\n
$$
a_{0}(x) = e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$
\n
$$
a_{0}(x) = e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$
\n
$$
a_{0}(x) = e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$
\n
$$
a_{0}(x) = e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$
\n
$$
a_{0}(x) = e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$
\n
$$
a_{0}(x) = e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$
\n
$$
a_{0}(x) = e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots
$$
\n
$$
a_{0}(x) = e^{x} = 1 + x + \frac{1}{2!}x
$$

Let's find y(x).

Let 's find y(x).
\nWe have:
\n
$$
\int \frac{1}{2}x^2 + \sin(x)y^2 + e^{x}y = 0
$$
\n
$$
\int \frac{1}{2}x^2(0) = 1, y(0) = 1
$$
\n
$$
\int \frac{1}{2}x^2(0) = 1, y(0) = 1
$$
\n
$$
\int \frac{1}{2}x^2(0) = -1
$$
\n
$$
\int \frac{1}{2}x^2(0) + \int \frac{1}{2}x^2(0) + \int \frac{1}{2}x^2(0) = 0
$$
\n
$$
\int \frac{1}{2}x^2(0) + \int \frac{1}{2}x^2(0) + \int \frac{1}{2}x^2(0) + \int \frac{1}{2}x^2(0) = 0
$$
\n
$$
\int \frac{1}{2}x^2(0) = -3
$$
\n
$$
\int \frac{1}{2}x^2(0) = -3
$$

So,
\n
$$
y(x) = y(\circ) + y'(\circ) \times + \frac{y''(\circ)}{2!} \times + \frac{y''(\circ)}{3!} \times + \cdots
$$
\n
$$
= | + \times + \frac{-1}{2!} \times - \frac{3}{3!} \times + \cdots
$$
\n
$$
= | + \times - \frac{1}{2} \times - \frac{1}{2} \times + \cdots
$$

$$
f_{D^r} - \infty < x < \infty
$$
.